Mathematics in the Light of Transcendental Aesthetics: did Kant Create a ‘Philosophy of Mathematics’?
DOI:
https://doi.org/10.31649/sent44.02.058Keywords:
transcendental principles of mathematics, representation, productive power of imagination, mathematical objects, logistic models of mathematicsAbstract
The article is devoted to the criticism of the thesis about the existence of a special ‘Philosophy of Mathematics’ in Kant’s transcendental philosophy. Based on the analysis of the peculiarities of the formation of mathematical subjects, in particular in the fields of arithmetic, geometry, and algebra, as well as the role of imaging and the productive power of imagination, the synthetic nature of mathematics and its ability to produce new knowledge, which corresponds to the basic principles of transcendental philosophy, is proved. It is demonstrated that the Kantian position is represented by the establishment of a priori conditions for the possibility of mathematical cognition, not a logical justification of mathematical concepts. It proves that the Kantian transcendental approach to mathematical cognition does not require formal-logical justification, which is inherent in most modern models of the philosophy of mathematics.
References
Alavi, F. (2020). Reading Kant’s doctrine of schematism algebraically. Philosophical Forum, 51(3), 315-329. https://doi.org/10.1111/phil.12261
Beth, E. W. (1957). Über Lockes Allgemeines Dreieck. Kant-Studien, 48(1-4), 361-380. https://doi.org/10.1515/kant.1957.48.1-4.361
Brittan, G. (1992). Algebra and Intuition. In C. J. Posy (Ed.), Kant’s Philosophy of Mathematics: Modern Essays (рр. 315-339). Dordrecht: Kluwer Academic Publishers.
https://doi.org/10.1007/978-94-015-8046-5_13
Brittan, G. (2020). Continuity, Constructibility, and Intuitivity. In C. Posy & O. Rechter (Eds.), Kant’s Philosophy of Mathematics: Vol. I: The Critical Philosophy and Its Roots (рр. 181-199). Dordrecht: Kluwer Academic Publishers.
https://doi.org/10.1017/9781107337596.009
Couturat, L. (1965). Die philosophischen Prinzipien der Mathematik. Kants Philosophie der Mathematik. Leipzig: A. Kröner
Eberhard, J. A. (1788). Üeber die logische Wahrheit oder die transscendentale Gültigkeit der menschlichen Erkenntniß. In J. A. Eberhard, Philosophisches Magazin (SS.186-231). Halle: Gebauer.
Engelhard, К., & Mittelstaedt, Р. (2008). Kant’s Theory of Arithmetic: A Constructive Approach? Journal for General Philosophy of Science, 39(2), 245-271.
https://doi.org/10.1007/s10838-008-9072-y
Fazelpour, S., & Thompson, E. (2015). The Kantian brain: brain dynamics from a neurophe-nomenological perspective. Current Opinion in Neurobiology, 31, 223-229.
https://doi.org/10.1016/j.conb.2014.12.006
Ferrarin, А. (1995). Construction and Mathematical Schematism Kant on the Exhibition of a Concept in Intuition. Kant-Studien, 86(2), 131-174.
https://doi.org/10.1515/kant.1995.86.2.131
Foss, L. (1967). Modern Geometries and the «Transcendental Aesthetic». Philosophia Mathematica, 1-4(1-2), 35-45. https://doi.org/10.1093/philmat/s1-4.1-2.35
Friedman, M. (2009). Geometry, Construction and Intuition in Kant and his Successors. In Between Logic and Intuition Essays in Honor of Charles Parsons (pp. 186-218). Cambridge: Cambridge UP. https://doi.org/10.1017/CBO9780511570681.010
Friedman, M. (2012). Kant on Geometry and Spatial Intuition. Synthese, 186, 231-255. https://doi.org/10.1007/s11229-012-0066-2
Friedman, M. (2020). Space and Geometry in the B Deduction. In C. Posy & O. Rechter (Eds.), Kant’s Philosophy of Mathematics: Vol. I: The Critical Philosophy and Its Roots (рр. 200-228). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1017/9781107337596.010
Hamilton, W. R. (1837). Theory of Conjugate Functions, or Algebraic Couples; with a Preliminary and Elementary Essay on Algebra as the Science of Pure Time. The Transactions of the Royal Irish Academy, 17, 293-423.
Hamilton, W. R. (1853). Lectures on quaternions: containing a systematic statement of a new mathematical method, of which the principles were communicated in 1843 to the Royal Irish academy, and which has since formed the subject of successive courses of lectures, delivered in 1848 and subsequent years, in the halls of Trinity college, Dublin. Dublin: Hodges and Smith.
Hankins, T. (1977). Hankins Triplets and Triads: Sir William Rowan Hamilton on the Metaphysics of Mathematics. Isis, 68,175-193. https://doi:10.1086/351766
Hanna, Р. (2002). Mathematics for humans: Kant's philosophy of arithmetic revisited. European Journal of Philosophy, 10(3), 328-352. https://doi.org/10.1111/1468-0378.00165
Hartmann, N. (1950). Philosophie der Natur: Abriß der speziellen Kategorienlehre. Berlin: De Gruyter.
Heis, J. (2014). Kant (vs. Leibniz, Wolff and Lambert) on Real Definitions in Geometry. Canadian Journal of Philosophy, 44(5-6), 605-630. https://doi.org/10.1080/00455091.2014.971689
Hendry, J. (1984). The evolution of William Rowan Hamilton’s view of algebra as the science of pure time. Studies in History and Philosophy of Science, 15(1), 63-81.
https://doi.org/10.1016/0039-3681(84)90030-X
Hintikka, J. (1967). Kant on the Mathematical Method. The Monist, 51(3), 352-375. https://doi.org/10.5840/monist196751322
Hintikka, J. (1969). On Kant’s Notion of Intuition (Anschauung). In T. Penelhum & J. MacIntosh (Eds.), The First Critique: Reflections on Kant’s Critique of Pure Reason (pp. 38-53). Belmont, CA: Wadsworth.
Hintikka, J. (1984). Kant’s Transcendental Method and His Theory of Mathematics. Topoi, 3(2), 99-108. https://doi.org/10.1007/BF00149782
Kant, I. (1900 sqq.). Gesammelte Schriften: Hrsg. von der Preußische Akademie der Wissenschaften; Deutsche Akademie der Wissenschaften zu Berlin; Akademie der Wissenschaften zu Göttingen (Akademie-Ausgabe, XXIX Bde). Berlin: Reimer & De Gruyter.
Kitcher, Ph. (1992). Kant and the Foundations of Mathematics. In C. J. Posy (Ed.), Kant’s Philosophy of Mathematics: Modern Essays (рр. 109-131). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-015-8046-5_5
Kjosavik, F. (2009). Kant on Geometrical Intuition and the Foundations of Mathematics. Kant Studien, 100(1), 1-27. https://doi.org/10.1515/KANT.2009.001
Koriako, D. (1999). Kant’s Philosophie der Mathematik. Hamburg: Felix Meiner Verlag.
Kozlovskyi, V. (2024). Russell’s doctrine of space and time in connection with Kant’s transcendental aesthetics. [In Ukrainian]. Sententiae, 43(2), 6-32. https://doi.org/10.31649/sent43.02.006
Kozlovskyi, V. (2024a). Kant’s Doctrine of Sensibility, Space and Time: Transcendental, Anthropological and Natural Science Connotations. [In Ukrainian]. Sententiae, 43(3), 81-98. https://doi.org/10.31649/sent43.03.081
Menzel, A. (1911). Die Stellung der Mathematik in Kants vorkritischer Philosophie. Kant-Studien, 16 (1-3), 139-213.
Manders, K. (2008). The Euclidean diagram. In P. Moncosu (Ed.), The philosophy of mathematical practice (pp. 80-133). Oxford: Oxford UP. https://doi.org/10.1093/acprof:oso/9780199296453.003.0005
Natorp, P. (1910). Logik (Grundlegung und logischer Aufbau der Mathematik und mathematischen Naturwissenschaft) in Leitsätzen zu akademischen Vorlesungen von Paul Natorp. Zweite, umgearbeitete Auflage. Marburg: N. G. Elwert.
Parsons, Ch. (1992). Kant’s Philosophy of Arithmetic. In C. J. Posy (Ed.), Kant’s Philosophy of Mathematics: Modern Essays (рр. 43-79). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-015-8046-5_3
Posy, C. (1984). Kant’s Mathematical Realism. The Monist, 67(1), 115-134. https://doi.org/10.5840/monist198467111
Posy, C., & Rechter, O. (Eds.). (2020). Kant’s Philosophy of Mathematics. Vol.1: The Critical Philosophy and Its Roots. Cambridge: Cambridge UP. https://doi.org/10.1017/9781107337596
Reichenbach, Н. (1951). The Rise of Scientific Philosophy. University of California Press. https://doi.org/10.1525/9780520341760
Russell, B. (2010). The Principles of Mathematics. London; New York: Routledge.
Schönecker, D., & Kim, H. (Eds.). (2022). Kant and Artificial Intelligence. Berlin; Boston: De Gruyter.
Shabel, L. (2004). Kants «Argument from Geometry». Journal of the History of Philosophy, 42(2), 195-215. https://doi.org/10.1353/hph.2004.0034
Sutherland, D. (2006). Kant on arithmetic, algebra, and the theory of proportions. Journal of the History of Philosophy, 44(4), 533-558. https://doi.org/10.1353/hph.2006.0072
Sutherland, D. (2020). Kant’s Philosophy of Arithmetic: An Outline of a New Approach. In C. Posy & O. Rechter (Eds.), Kant’s Philosophy of Mathematics: Vol. I: The Critical Phi-losophy and Its Roots (рр. 248-266). Dordrecht: Kluwer Academic Publishers.
https://doi.org/10.1017/9781107337596.012
Sutherland, D. (2021). Kant’s Mathematical World: Mathematics, Cognition, and Experience. Cambridge: Cambridge UP. https://doi.org/10.1017/9781108555746
Vaihinger, H. (1881-1892). Кommentar zu Kants Kritik der reinen Vernunft (Bd. 1-2). Stutt-gart, Berlin, & Leipzig: Union Deutsche Verlagsgesellschaft.
Willaschek, M. (1997). Der transzendentale Idealismus und die Idealität von Raum und Zeit. Eine 'lückenlose' Interpretation von Kants Beweis in der «Transzendentalen Ästhetik». Zeitschrift für philosophische Forschung, 51(4), 537-564.
Winterbourne, A. T. (1981). Construction and the role of schematism in Kant’s philosophy of mathematics. Studies in History and Philosophy of Science, 12(1), 33-46. https://doi.org/10.1016/0039-3681(81)90003-0
Young, M. (1984). Construction, Schematism, and Imagination. Topoi, 3(2), 123-131. https://doi.org/10.1007/BF00149784
Downloads
-
PDF (Українська)
Downloads: 49
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).