Mathematics in the Light of Transcendental Aesthetics: did Kant Create a ‘Philosophy of Mathematics’?

Authors

DOI:

https://doi.org/10.31649/sent44.02.058

Keywords:

transcendental principles of mathematics, representation, productive power of imagination, mathematical objects, logistic models of mathematics

Abstract

The article is devoted to the criticism of the thesis about the existence of a special ‘Philosophy of Mathematics’ in Kant’s transcendental philosophy. Based on the analysis of the peculiarities of the formation of mathematical subjects, in particular in the fields of arithmetic, geo­metry, and algebra, as well as the role of imaging and the productive power of imagination, the synthetic nature of mathematics and its ability to produce new knowledge, which corresponds to the basic principles of transcendental philosophy, is proved. It is demonstrated that the Kantian position is represented by the establishment of a priori conditions for the possibility of mathematical cognition, not a logical justification of mathematical concepts. It proves that the Kantian transcendental approach to mathematical cognition does not require formal-logical justification, which is inherent in most modern models of the philosophy of mathematics.

Author Biography

Viktor Kozlovskyi, National University of Kyiv-Mohyla Academy

PhD, Associate Professor, Department of Philosophy and Religious Studies

References

Alavi, F. (2020). Reading Kant’s doctrine of schematism algebraically. Philosophical Forum, 51(3), 315-329. https://doi.org/10.1111/phil.12261

Beth, E. W. (1957). Über Lockes Allgemeines Dreieck. Kant-Studien, 48(1-4), 361-380. https://doi.org/10.1515/kant.1957.48.1-4.361

Brittan, G. (1992). Algebra and Intuition. In C. J. Posy (Ed.), Kant’s Philosophy of Mathematics: Modern Essays (рр. 315-339). Dordrecht: Kluwer Academic Publishers.

https://doi.org/10.1007/978-94-015-8046-5_13

Brittan, G. (2020). Continuity, Constructibility, and Intuitivity. In C. Posy & O. Rechter (Eds.), Kant’s Philosophy of Mathematics: Vol. I: The Critical Philosophy and Its Roots (рр. 181-199). Dordrecht: Kluwer Academic Publishers.

https://doi.org/10.1017/9781107337596.009

Couturat, L. (1965). Die philosophischen Prinzipien der Mathematik. Kants Philosophie der Mathematik. Leipzig: A. Kröner

Eberhard, J. A. (1788). Üeber die logische Wahrheit oder die transscendentale Gültigkeit der menschlichen Erkenntniß. In J. A. Eberhard, Philosophisches Magazin (SS.186-231). Halle: Gebauer.

Engelhard, К., & Mittelstaedt, Р. (2008). Kant’s Theory of Arithmetic: A Constructive Approach? Journal for General Philosophy of Science, 39(2), 245-271.

https://doi.org/10.1007/s10838-008-9072-y

Fazelpour, S., & Thompson, E. (2015). The Kantian brain: brain dynamics from a neurophe-nomenological perspective. Current Opinion in Neurobiology, 31, 223-229.

https://doi.org/10.1016/j.conb.2014.12.006

Ferrarin, А. (1995). Construction and Mathematical Schematism Kant on the Exhibition of a Concept in Intuition. Kant-Studien, 86(2), 131-174.

https://doi.org/10.1515/kant.1995.86.2.131

Foss, L. (1967). Modern Geometries and the «Transcendental Aesthetic». Philosophia Mathematica, 1-4(1-2), 35-45. https://doi.org/10.1093/philmat/s1-4.1-2.35

Friedman, M. (2009). Geometry, Construction and Intuition in Kant and his Successors. In Between Logic and Intuition Essays in Honor of Charles Parsons (pp. 186-218). Cambridge: Cambridge UP. https://doi.org/10.1017/CBO9780511570681.010

Friedman, M. (2012). Kant on Geometry and Spatial Intuition. Synthese, 186, 231-255. https://doi.org/10.1007/s11229-012-0066-2

Friedman, M. (2020). Space and Geometry in the B Deduction. In C. Posy & O. Rechter (Eds.), Kant’s Philosophy of Mathematics: Vol. I: The Critical Philosophy and Its Roots (рр. 200-228). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1017/9781107337596.010

Hamilton, W. R. (1837). Theory of Conjugate Functions, or Algebraic Couples; with a Preliminary and Elementary Essay on Algebra as the Science of Pure Time. The Transactions of the Royal Irish Academy, 17, 293-423.

Hamilton, W. R. (1853). Lectures on quaternions: containing a systematic statement of a new mathematical method, of which the principles were communicated in 1843 to the Royal Irish academy, and which has since formed the subject of successive courses of lectures, delivered in 1848 and subsequent years, in the halls of Trinity college, Dublin. Dublin: Hodges and Smith.

Hankins, T. (1977). Hankins Triplets and Triads: Sir William Rowan Hamilton on the Metaphysics of Mathematics. Isis, 68,175-193. https://doi:10.1086/351766

Hanna, Р. (2002). Mathematics for humans: Kant's philosophy of arithmetic revisited. European Journal of Philosophy, 10(3), 328-352. https://doi.org/10.1111/1468-0378.00165

Hartmann, N. (1950). Philosophie der Natur: Abriß der speziellen Kategorienlehre. Berlin: De Gruyter.

Heis, J. (2014). Kant (vs. Leibniz, Wolff and Lambert) on Real Definitions in Geometry. Canadian Journal of Philosophy, 44(5-6), 605-630. https://doi.org/10.1080/00455091.2014.971689

Hendry, J. (1984). The evolution of William Rowan Hamilton’s view of algebra as the science of pure time. Studies in History and Philosophy of Science, 15(1), 63-81.

https://doi.org/10.1016/0039-3681(84)90030-X

Hintikka, J. (1967). Kant on the Mathematical Method. The Monist, 51(3), 352-375. https://doi.org/10.5840/monist196751322

Hintikka, J. (1969). On Kant’s Notion of Intuition (Anschauung). In T. Penelhum & J. MacIntosh (Eds.), The First Critique: Reflections on Kant’s Critique of Pure Reason (pp. 38-53). Belmont, CA: Wadsworth.

Hintikka, J. (1984). Kant’s Transcendental Method and His Theory of Mathematics. Topoi, 3(2), 99-108. https://doi.org/10.1007/BF00149782

Kant, I. (1900 sqq.). Gesammelte Schriften: Hrsg. von der Preußische Akademie der Wissenschaften; Deutsche Akademie der Wissenschaften zu Berlin; Akademie der Wissenschaften zu Göttingen (Akademie-Ausgabe, XXIX Bde). Berlin: Reimer & De Gruyter.

Kitcher, Ph. (1992). Kant and the Foundations of Mathematics. In C. J. Posy (Ed.), Kant’s Philosophy of Mathematics: Modern Essays (рр. 109-131). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-015-8046-5_5

Kjosavik, F. (2009). Kant on Geometrical Intuition and the Foundations of Mathematics. Kant Studien, 100(1), 1-27. https://doi.org/10.1515/KANT.2009.001

Koriako, D. (1999). Kant’s Philosophie der Mathematik. Hamburg: Felix Meiner Verlag.

Kozlovskyi, V. (2024). Russell’s doctrine of space and time in connection with Kant’s transcendental aesthetics. [In Ukrainian]. Sententiae, 43(2), 6-32. https://doi.org/10.31649/sent43.02.006

Kozlovskyi, V. (2024a). Kant’s Doctrine of Sensibility, Space and Time: Transcendental, Anthropological and Natural Science Connotations. [In Ukrainian]. Sententiae, 43(3), 81-98. https://doi.org/10.31649/sent43.03.081

Menzel, A. (1911). Die Stellung der Mathematik in Kants vorkritischer Philosophie. Kant-Studien, 16 (1-3), 139-213.

Manders, K. (2008). The Euclidean diagram. In P. Moncosu (Ed.), The philosophy of mathematical practice (pp. 80-133). Oxford: Oxford UP. https://doi.org/10.1093/acprof:oso/9780199296453.003.0005

Natorp, P. (1910). Logik (Grundlegung und logischer Aufbau der Mathematik und mathematischen Naturwissenschaft) in Leitsätzen zu akademischen Vorlesungen von Paul Natorp. Zweite, umgearbeitete Auflage. Marburg: N. G. Elwert.

Parsons, Ch. (1992). Kant’s Philosophy of Arithmetic. In C. J. Posy (Ed.), Kant’s Philosophy of Mathematics: Modern Essays (рр. 43-79). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-015-8046-5_3

Posy, C. (1984). Kant’s Mathematical Realism. The Monist, 67(1), 115-134. https://doi.org/10.5840/monist198467111

Posy, C., & Rechter, O. (Eds.). (2020). Kant’s Philosophy of Mathematics. Vol.1: The Critical Philosophy and Its Roots. Cambridge: Cambridge UP. https://doi.org/10.1017/9781107337596

Reichenbach, Н. (1951). The Rise of Scientific Philosophy. University of California Press. https://doi.org/10.1525/9780520341760

Russell, B. (2010). The Principles of Mathematics. London; New York: Routledge.

Schönecker, D., & Kim, H. (Eds.). (2022). Kant and Artificial Intelligence. Berlin; Boston: De Gruyter.

Shabel, L. (2004). Kants «Argument from Geometry». Journal of the History of Philosophy, 42(2), 195-215. https://doi.org/10.1353/hph.2004.0034

Sutherland, D. (2006). Kant on arithmetic, algebra, and the theory of proportions. Journal of the History of Philosophy, 44(4), 533-558. https://doi.org/10.1353/hph.2006.0072

Sutherland, D. (2020). Kant’s Philosophy of Arithmetic: An Outline of a New Approach. In C. Posy & O. Rechter (Eds.), Kant’s Philosophy of Mathematics: Vol. I: The Critical Phi-losophy and Its Roots (рр. 248-266). Dordrecht: Kluwer Academic Publishers.

https://doi.org/10.1017/9781107337596.012

Sutherland, D. (2021). Kant’s Mathematical World: Mathematics, Cognition, and Experience. Cambridge: Cambridge UP. https://doi.org/10.1017/9781108555746

Vaihinger, H. (1881-1892). Кommentar zu Kants Kritik der reinen Vernunft (Bd. 1-2). Stutt-gart, Berlin, & Leipzig: Union Deutsche Verlagsgesellschaft.

Willaschek, M. (1997). Der transzendentale Idealismus und die Idealität von Raum und Zeit. Eine 'lückenlose' Interpretation von Kants Beweis in der «Transzendentalen Ästhetik». Zeitschrift für philosophische Forschung, 51(4), 537-564.

Winterbourne, A. T. (1981). Construction and the role of schematism in Kant’s philosophy of mathematics. Studies in History and Philosophy of Science, 12(1), 33-46. https://doi.org/10.1016/0039-3681(81)90003-0

Young, M. (1984). Construction, Schematism, and Imagination. Topoi, 3(2), 123-131. https://doi.org/10.1007/BF00149784

Downloads

Abstract views: 41

Published

2025-08-30

How to Cite

Kozlovskyi, V. (2025). Mathematics in the Light of Transcendental Aesthetics: did Kant Create a ‘Philosophy of Mathematics’?. Sententiae, 44(2), 58–86. https://doi.org/10.31649/sent44.02.058

Issue

Section

ARTICLES

Metrics

Downloads

Download data is not yet available.