Russell’s doctrine of space and time in connection with Kant’s transcendental aesthetics
DOI:
https://doi.org/10.31649/sent43.02.006Keywords:
mathematics, logicism, forms of intuition, topology, epistemology, neorealist, psychological space and timeAbstract
Author demonstrates that Russell’s conception of space and time diverges from Kant’s transcendental aesthetics and leans towards logical and mathematical topology. Russell’s approach is grounded in analytical rather than synthetic judgments, contrasting with Kant’s perspective. The British philosopher develops a subjective-psychological model of space and time that complements the logical-mathematical model, serving as the foundation for human experience and cognition. This Russellian model considers the psychological aspects of perceptual and tactile space and time, highlighting their intersection in human perception, which facilitates the experience. It represents a form of «return» to Kant’s subjective theory, albeit on psychological rather than transcendental principles. It is argued that Russell incorporates physical topology into subjective-psychological space and time because he views things as physical objects rather than a complex of sensory associations. This incorporation is indicative of Russell's commitment to neorealism.
References
Ayer, А. J. (1974). Russell. London: The Woburn Press.
Baldwin, Th. (2003). From Knowledge by Acquaintance to Knowledge by Causation. In N. Griffin (Ed.), The Cambridge Companion to Bertrand Russell (pp. 420-448). Cambridge: Cambridge UP. https://doi.org/10.1017/CCOL0521631785.014
Bradley, F. H. (1968). Appearance and Reality. A Metaphysical Essay. Oxford: Clarendon Press.
Brennan, F., & Griffin, N. (1997-98). Russell’s Marginalia in his Copy of William James’s Princi-ples of Psychology. Russell: The Journal of Bertrand Russell Studies, 17(2), 123-170. https://doi.org/10.15173/russell.v17i2.1921
Byrd, М. (1995-97). Parts III-IV of The Principles of Mathematics. Russell: The Journal of Ber-trand Russell Studies, 16(2). 145-168. https://doi.org/10.15173/russell.v16i2.1902
Cohen, W. А. (2022). Denoting Concepts and Ontology in Russell’s Principles of Mathematics. Journal for the History of Analytical Philosophy, 10(7), 1-22. https://doi.org/10.15173/jhap.v10i7.5021
Coffa, J. A. (1981). Russell and Kant. Synthese, 46(2), 247-263. https://doi:10.1007/bf01064390
Demopoulos, W. (2003). Russell’s Structuralism and the Absolute Description of the World. In N. Griffin (Ed.), The Cambridge Companion to Bertrand Russell (pp. 392-419). Cambridge: Cambridge UP. https://doi.org/10.1017/CCOL0521631785.013
Eames, E. R. (1989). Bertrand Russell’s Dialogue with his Contemporaries. Carbondale: Southern Illinois UP.
Frege, G. (1988). Grundlagen der Arithmetik: Eine logisch mathematische Untersuchung über den Begriff der Zahl. Hamburg: Meiner.
Griffin, N. (2003). Russell’s Philosophical Background. In N. Griffin (Ed.), The Cambridge Com-panion to Bertrand Russell (pp. 84-107). Cambridge: Cambridge UP. https://doi.org/10.1017/CCOL0521631785.003
Garciadiego, A. R. (1992). Bertrand Russell and the Origins of the Set-theoretic ‘Paradoxes’. Basel: Birkhäuser. https://doi.org/10.1007/978-3-0348-7402-1
Grattan-Guinness, І. (2012). Logic, Topology and Physics: Points of Contact Between Bertrand Russell and Max Newman. Russell: The Journal of Bertrand Russell Studies, 32(1), 5-29. https://doi.org/10.1353/rss.2012.0007
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik. Akademische Verlagsgesellschaft, 38, 173-198. https://doi.org/10.1007/BF01700692
Halimi, B. (2017). Generality of Logical Types. Russell: The Journal of Bertrand Russell Studies, 31(1), 85-107. https://doi.org/10.1353/rss.2011.0012
Harrell, М. (1988). Extension to geometry of Principia Mathematica and related systems II. Russell: The Journal of Bertrand Russell Studies, 8(1-2), 140-160. https://doi.org/10.15173/russell.v8i1.1720
Kant, I. (1900-). Gesammelte Schriften (Bd. 1-29). (Preussische Akademie der Wissenschaften, Deutsche Akademie der Wissenschaften zu Berlin, Akademie der Wissenschaften zu Göttingen, Hrsg.). Berlin: Reimer, & De Gruyter.
Klement, K. C. (2014). Russell’s Logicism Through Kantian Spectacles. Russell: The Journal of Bertrand Russell Studies, 34(1), 79-84. https://doi.org/10.1353/rss.2014.0010
Korhonen, А. (2013). Logic as Universal Science: Russell’s Early Logicism and its Philosophical Context. Basingstoke: Palgrave Macmillan. https://doi.org/10.1057/9781137304858
Levine, J. (1998). From Absolute Idealism to The Principles of Mathematics. International Journal of Philosophical Studies, 6(1), 87-127. https://doi.org/10.1080/096725598342208
Linsky, B. (1999). Russell’s Metaphysical Logic. Stanford: CSLI Publications.
Linsky, B. (2011). The evolution of Principia Mathematica: Bertrand Russell’s manuscripts and notes for the second edition. Cambridge: Cambridge UP. https://doi.org/10.1017/CBO9780511760181
Nusenoff, R. E. (1978). Russell’s external world: 1912-1921. Russell: The Journal of Bertrand Russell Studies, 29, 65-82. https://doi.org/10.15173/russell.v0i1.1490
Potter, M. (2000). Reason’s Nearest Kin: Philosophies of Arithmetic from Kant to Carnap. Oxford: Oxford UP.
Quine, W. V. O. (1961). Mathematical Logic. Cambridge, Mass.: Harvard UP.
Richards, J. L. (1988). Bertrand Russell’s Essay on the Foundations of Geometry and the Cam-bridge mathematical tradition. Russell: The Journal of Bertrand Russell Studies, 8(1-2), 59-80. https://doi.org/10.15173/russell.v8i1.1733
Russell, B. (1896). The Logic of Geometry. Mind, 5(1), 1-23. https://doi.org/10.1093/mind/V.1.1
Russell, B. (1896а). The A Priori in Geometry. Proceedings of the Aristotelian Society, 3(2), 97-112. https://doi.org/10.1093/ulr/os-3.2.97
Russell, B. (1897). An Essay on the Foundations of Geometry. Cambridge: Cambridge UP.
Russell, B. (1900). A Critical Exposition of the Philosophy of Leibniz. Cambridge: Cambridge UP.
Russell, B. (1901). Is Position in Time and Space Absolute or Relative? Mind, 10(1), 293-317. https://doi.org/10.1093/mind/X.1.293
Russell, B. (1914). Our Knowledge of the External World as a Field for Scientific Method in Phi-losophy. Chicago & London: Open Court Publishing. https://doi.org/10.5962/bhl.title.2067
Russell, B. (1921). The Analysis of Mind. London: George Allen & Unwin.
Russell, B. (1923). The ABC of Atoms. London: Kegan Paul. Trench, Trubner.
Russell, B. (1925). ABC Of Relativity. London: Kegan Paul, Trench, Trubner.
Russell, B. (1927). The Analysis of Matter. London: Kegan Paul, Trench, Trubner.
Russell, B. (1940). An Inquiry into Meaning and Truth. New York: W. W. Norton & Company.
Russell, B. (1945). A History of Western Philosophy and Its Connection with Political and Social Circumstances from the Earliest Times to the Present Day. New York: Simon & Schuster.
Russell, B. (1948). Human Knowledge: Its Scope аnd Limits. London; George Allen & Unwin.
Russell, B. (1956). Logic and Knowledge. Essays, 1901-1950. London: George Allen & Unwin.
Russell, B. (1959). My Philosophical Development. New York: Simon & Schuster.
Russell, B. (1959а). Wisdom of the West: A Historical Survey of Western Philosophy in Its Social and Political Setting. London: Macdonald.
Russell, B. (2009). The Basic Writings of Bertrand Russell. London & New York: Routledge. https://doi.org/10.4324/9780203875391
Russell, B. (2010). The Principles of Mathematics. London; New York: Routledge.
Shabel, L. (2004). Kants «Argument from Geometry». Journal of the History of Philosophy, 42(2), 195-215. https://doi.org/10.1353/hph.2004.0034
Vaihinger, H. (1881-1892). Кommentar zu Kants Kritik der reinen Vernunft (Bd. 1-2). Stuttgart; Berlin; Leipzig: Union Deutsche Verlagsgesellschaft.
Whitehead, A. N. (1898). A Treatise on Universal Algebra. Cambridge: Cambridge UP.
Whitehead, A. N. (1907). The Axioms of Descriptive Geometry. Cambridge: Cambridge UP.
Whitehead, A. N. (1911). An Introduction to Mathematics. Cambridge: Cambridge UP.
Whitehead, A. N. (1929). Process and Reality: An Essay in Cosmology. New York: Macmillan
Whitehead, A. N., & Russell, B. (1927). Principia Mathematica (Vol. 1). Cambridge: Cambridge UP.
Whitehead, A. N., & Russell, B. (1927). Principia Mathematica (Vol.3). Cambridge: Cambridge UP.
Willaschek, M. (1997). Der transzendentale Idealismus und die Idealität von Raum und Zeit. Eine «lückenlose» Interpretation von Kants Beweis in der «Transzendentalen Ästhetik». Zeitschrift für philosophische Forschung, 51(4), 537-564.
Wilson, Th. A. (1985). Russell’s later theory of perception. Russell: The Journal of Bertrand Rus-sell Studies, 5(1), 26-43. https://doi.org/10.1353/rss.1985.0001
Wood, А. (1959). Russell’s Philosophy: a Study of its Development. In В. Russell, My Philosoph-ical Development (рр. 255-277). New York: Simon & Schuster.
Downloads
-
PDF (Українська)
Downloads: 604
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).